logo
Volume 7, Issue 20 (Spring 2024)                   J Altern Vet Med 2024, 7(20): 1195-1201 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moghaddasi K, Hesaraki S, Arfaee F, Athari S S. Investigating the Effect of Bone Marrow-Derived Mesenchymal Stem Cells on Airway Hyper-Responsiveness of Asthma Mouse Model. J Altern Vet Med 2024; 7 (20) :1195-1201
URL: http://joavm.kazerun.iau.ir/article-1-163-en.html
1- Department of Clinical Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
2- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran , SS.Athari@gmail.com
Abstract:   (140 Views)
Background and aim: Asthma is one of the main lung diseases that is identified by eosinophilic inflammation, mucus secretion, airway hyper-responsiveness (AHR) and airway obstruction. AHR is one of the important action of airways in asthma. Mesenchymal stem cells (MSCs) have regulatory effect on immune response and may be useful to the treatment of asthma. MSCs have low immunogenicity and may be safe in application. Therefore, study effect of mouse bone marrow-mesenchymal stem cells (BM-MSCs) controlling of AHR in asthma model was done.
Materials and Methods: BM-MSCs were isolated and used as treatment in asthmatic male BALB/c mice. To produce asthma animal model, mice were sensitized and challenged with OVA. On days 30 and 40, to measure of AHR, Methacholine (MCh) challenge test was applied to determine the Penh value. Finally, AHR were recorded and analyzed.
Results: Treatment of asthmatic mice with BM-MSCs could control AHR in MCh challenge test and it has significant difference (p<0.05) between days 30 and 40.
Conclusion: BM-MSCs are almost non-immunogenic and can be used to treat asthma and control of AHR. Using of MSCs as anti-asthma treatment presents new and applicable strategy to control of AHR in asthma.
Full-Text [PDF 1477 kb]   (86 Downloads)    
Type of Study: Research | Subject: Pharmacology and Pathology
Received: 2023/11/4 | Accepted: 2024/04/12 | Published: 2024/05/30

References
1. Ankermann T. and Brehler R. Allergen immunotherapy (AIT) in asthma. Semin Immunol, 2019; 46:101334. [DOI:10.1016/j.smim.2019.101334] [PMID]
2. Bao XH., Gao F., Athari SS. and Wang H. Immunomodulatory effect of IL-35 gene-transfected mesenchymal stem cells on allergic asthma. Fundam Clin Pharmacol, 2023; 37(1): 116-124. [DOI:10.1111/fcp.12823] [PMID]
3. Booth BW., Sandifer T., Martin EL. and Martin LD. IL-13-induced proliferation of airway epithelial cells: mediation by intracellular growth factor mobilization and ADAM17. Respir Res, 2007; 8: 51. [DOI:10.1186/1465-9921-8-51] [PMID] []
4. Cheng C., Nasab EM. and Athari SS. Survey of immunopharmacological effects of botulinum toxin in cell signaling of bronchial smooth muscle cells in allergic asthma. Allergol Immunopathol (Madr), 2022; 50(3):93-100. [DOI:10.15586/aei.v50i3.549] [PMID]
5. Cruz FF., Borg ZD., Goodwin M., Sokocevic D., Wagner DE., Coffey A., et al. Systemic administration of human bone marrow derived mesenchymal stromal cell extracellular vesicles ameliorates aspergillus hyphal extract induced allergic airway inflammation in immunocompetent mice. Stem Cells Transl Med, 2015; 4(11): 1302-1316. [DOI:10.5966/sctm.2014-0280] [PMID] []
6. Hou C., Sun F., Liang Y., Nasab EM. And Athari SS. Effect of transduced mesenchymal stem cells with IL-10 gene on control of allergic asthma. Allergol Immunopathol (Madr), 2023; 51(2): 45-51. [DOI:10.15586/aei.v51i2.789] [PMID]
7. Hu X., Yu SP., Fraser JL., Lu Z., Ogle ME., Wang JA., et al. Transplantation of hypoxia preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg, 2008; 135(4): 799-808. [DOI:10.1016/j.jtcvs.2007.07.071] [PMID]
8. Huang M., Mehrabi Nasab E. and Athari SS. Immunoregulatory effect of mesenchymal stem cell via mitochondria signaling pathways in allergic asthma. Saudi J Biol Sci , 2021; 28(12): 6957-6962. [DOI:10.1016/j.sjbs.2021.07.071] [PMID] []
9. Isik E., Fredland NM. and Freysteinson WM. School and Community-based Nurse-led Asthma Interventions for School-aged Children and Their Parents: A Systematic Literature Review. J Pediatr Nurs, 2019; 44:107-114. [DOI:10.1016/j.pedn.2018.11.007] [PMID]
10. Jiang J., Mehrabi Nasab E., Athari SM. and Athari SS. Effects of vitamin E and selenium on allergic rhinitis and asthma pathophysiology. Respir Physiol Neurobiol, 2021; 286:103614. [DOI:10.1016/j.resp.2020.103614] [PMID]
11. Lathrop MJ., Brooks EM., Bonenfant NR., Sokocevic D., Borg ZD., Goodwin M., et al. Mesenchymal stromal cells mediate aspergillus hyphal extract-induced allergic airway inflammation by inhibition of the Th19 signaling pathway. Stem Cells Transl Med, 2014; 3(2): 194-205. [DOI:10.5966/sctm.2013-0061] [PMID] []
12. Lin YD., Fan XL., Zhang H., Fang SB., Li CL., Deng MX., et al. The genes involved in asthma with the treatment of human embryonic stem cell-derived mesenchymal stem cells. Mol Immunol, 2018; 95: 47-55. [DOI:10.1016/j.molimm.2018.01.013] [PMID]
13. Miceli Sopo S., Bersani G., Del Vescovo E. and Gelsomino M. Disagreement between guidelines regarding the third step of asthma drug therapy for school-age children. Allergol Immunopathol (Madr), 2020; 48:789-91. [DOI:10.1016/j.aller.2019.12.004] [PMID]
14. Ouyang Y., Miyata M., Hatsushika K., Ohnuma Y., Katoh R., Ogawa H., et al. TGF-beta signaling may play a role in the development of goblet cell hyperplasia in a mouse model of allergic rhinitis. Allergol Int, 2010; 59(3): 313-319. [DOI:10.2332/allergolint.10-SC-0172] [PMID]
15. Roxbury CR. and Lin SY. Efficacy and safety of subcutaneous and sublingual immunotherapy for allergic rhinoconjunctivitis and asthma. Otolaryngol Clin North Am, 2017; 50(6): 1111-1119. [DOI:10.1016/j.otc.2017.08.011] [PMID]
16. Samitas K., Delimpoura V., Zervas E. and Gaga M. Anti-IgE treatment, airway inflammation and remodelling in severe allergic asthma: current knowledge and future perspectives. Eur Respir Rev, 2015; 24(138): 594-601. [DOI:10.1183/16000617.00001715] [PMID] []
17. Tanaka H., Komai M., Nagao K., Ishizaki M., Kajiwara D., Takatsu K., et al. Role of interleukin-5 and eosinophils in allergen-induced airway remodeling in mice. Am J Respir Cell Mol Biol, 2004; 31(1): 62-68. [DOI:10.1165/rcmb.2003-0305OC] [PMID]
18. Urbanek K., De Angelis A., Spaziano G., Piegari E., Matteis M., Cappetta D., et al. Intratracheal administration of mesenchymal stem cells modulates tachykinin system, suppresses airway remodeling and reduces airway hyperresponsiveness in an animal model. PLoS One, 2016; 11(7):e0158746. [DOI:10.1371/journal.pone.0158746] [PMID] []
19. Xuan X., Sun Z., Yu C., Chen J., Chen M., Wang Q., et al. Network pharmacology-based study of the protective mechanism of conciliatory anti-allergic decoction on asthma. Allergol Immunopathol,(Madr). 2020; 48:441-9. [DOI:10.1016/j.aller.2019.12.011] [PMID]
20. Yin J., Yan F., Zheng R., Wu X. and Athari SS. Immunomodulatory effect of IL-2 induced bone marrow mononuclear cell therapy on control of allergic asthma. Allergol Immunopathol (Madr), 2023; 51(1): 110-115. [DOI:10.15586/aei.v51i1.746] [PMID]
21. Zhang R., Yin Z., Pan J., Zhai C., Athari SS. and Dong L. Effect of transfected induced pluripotent stem cells with Decorin gene on control of lung remodeling in allergic asthma. J Investig Med, 2023; 71(3) 235-243. [DOI:10.1177/10815589221140590] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.