logo
Volume 7, Issue 20 (Spring 2024)                   J Altern Vet Med 2024, 7(20): 1202-1211 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Habibi G H. Enzybiotics, a Promising Era in Confronting Bacteria in the Poultry Industry. J Altern Vet Med 2024; 7 (20) :1202-1211
URL: http://joavm.kazerun.iau.ir/article-1-147-en.html
Department of Clinical Sciences, Faculty of Veterinary Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran , habibigh42@yahoo.com
Abstract:   (155 Views)
Since the discovery of antibiotics, they have been used widely for disease control. Antibiotics were also found to be useful in growth promotion in the poultry industry. However, their overuse and misuse have led to bacterial resistance against them. Antibiotic resistance is a global issue that results in considerable health and economic losses. Marked antibiotic resistance against various antibiotics has been observed in poultry infections. To counteract the burdens of antibiotic resistance, various alternatives for antibiotics are being studied. These alternative approaches have also been subjects of interest in the poultry industry, as poultry infections result in dramatic economic loss, and in cases of zoonotic infections, the transmission of infection from chicken leads to dramatic health burdens in humans. Phage therapy, probiotics, and anti-microbial peptides administration are some examples of these alternative approaches. Another antibiotic alternative approach is called "enzybiotics". In enzybiotics, peptidoglycan hydrolases (endolysins) are used to degrade bacterial cell walls. These enzymes are mostly found in bacteriophages’ genomes because bacteriophages have to degrade the peptidoglycan layers of bacteria both to enter and exit their bacterial host. Bacterial genomes also contain some regions with peptidoglycan hydrolase properties which help bacteria in growth and division. The properties of various peptidoglycan hydrolases have been studied to find the more potent and applicable ones for future uses. Due to their advantages, endolysins are promising antibiotic alternatives. In this review, we will discuss the role of enzybiotics in the poultry industry. Also, endolysin advantages and limitations of their administration are discussed here.
Full-Text [PDF 1269 kb]   (150 Downloads)    
Type of Study: Review | Subject: Food Hygiene
Received: 2023/06/15 | Accepted: 2023/08/19 | Published: 2024/05/30

References
1. Abdelrahman F., Easwaran M., Daramola OI., Ragab S., Lynch S., Oduselu TJ., et al. Phage-Encoded Endolysins. Antibiotics (Basel), 2021; 10(2):124. [DOI:10.3390/antibiotics10020124] [PMID] []
2. Al Hakeem WG., Fathima S., Shanmugasundaram R. and Selvaraj RK. Campylobacter jejuni in poultry: pathogenesis and control strategies. Microorganisms, 2022;10 (11): 2134. [DOI:10.3390/microorganisms10112134] [PMID] []
3. Ali MZ. and Islam MM. Characterization of β-lactamase and quinolone resistant Clostridium perfringens recovered from broiler chickens with necrotic enteritis in Bangladesh. Iran J Vet Res, 2021; 22(1): 48-54.
4. Awad NFS., Hashem YM., Elshater NS., Khalifa E., Hamed RI., Nossieur HH., et al. Therapeutic potentials of aivlosin and/or zinc oxide nanoparticles against Mycoplasma gallisepticum and/or Ornithobacterium rhinotracheale with a special reference to the effect of zinc oxide nanoparticles on aivlosin tissue residues: an in vivo approach. Poult Sci, 2022; 101(6): 101884. [DOI:10.1016/j.psj.2022.101884] [PMID] []
5. Briers Y., Walmagh M. and Lavigne R. Use of bacteriophage endolysin EL188 and outer membrane permeabilizers against Pseudomonas aeruginosa. J Appl Microbiol, 2011; 110(3): 778-785. [DOI:10.1111/j.1365-2672.2010.04931.x] [PMID]
6. Camiade E., Peltier J., Bourgeois I., Couture-Tosi E., Courtin P., Antunes A., et al. Characterization of Acp, a peptidoglycan hydrolase of Clostridium perfringens with N-acetylglucosaminidase activity that is implicated in cell separation and stress-induced autolysis. J Bacteriol, 2010 May;192(9):2373-84. [DOI:10.1128/JB.01546-09] [PMID] []
7. Castro-Vargas RE., Herrera-Sánchez MP., Rodríguez-Hernández R. and Rondón-Barragán IS. Antibiotic resistance in Salmonella spp. isolated from poultry: A global overview. Vet World, 2020; 13(10): 2070-2084. [DOI:10.14202/vetworld.2020.2070-2084] [PMID] []
8. Centner TJ. Recent government regulations in the United States seek to ensure the effectiveness of antibiotics by limiting their agricultural use. Enviro Int, 2016; 94: 1-7. [DOI:10.1016/j.envint.2016.04.018] [PMID]
9. Cho JH., Kwon JG., O'Sullivan DJ., Ryu S. and Lee JH. Development of an endolysin enzyme and its cell wall-binding domain protein and their applications for biocontrol and rapid detection of Clostridium perfringens in food. Food Chem, 2021; 345: 128562. [DOI:10.1016/j.foodchem.2020.128562] [PMID]
10. Choi Y., Ha E., Kong M. and Ryu S. A novel chimeric endolysin with enhanced lytic and binding activity against Clostridium perfringens. LWT, 2023; 181: 114776. [DOI:10.1016/j.lwt.2023.114776]
11. Danis-Wlodarczyk KM., Wozniak DJ. and Abedon ST. Treating bacterial infections with bacteriophage-based enzybiotics: in vitro, in vivo and clinical application. Antibiotics (Basel), 2021; 10(12): 1497. [DOI:10.3390/antibiotics10121497] [PMID] []
12. Darboe S., Mirasol R., Adejuyigbe B., Muhammad AK., Nadjm B., De St Maurice A., et al. Using an antibiogram profile to improve infection control and rational antimicrobial therapy in an urban hospital in the gambia, strategies and lessons for low- and middle-income countries. Antibiotics (Basel), 2023; 12(4): 790. [DOI:10.3390/antibiotics12040790] [PMID] []
13. Deng H., Li M., Zhang Q., Gao C., Song Z., Chen C., et al. The broad-spectrum endolysin lysp2 improves chick survival after Salmonella pullorum infection. Viruses, 2023; 15: 836. [DOI:10.3390/v15040836] [PMID] []
14. Diacovich L., Lorenzi L., Tomassetti M., Méresse S. and Gramajo H. The infectious intracellular lifestyle of Salmonella enterica relies on the adaptation to nutritional conditions within the Salmonella-containing vacuole. Virulence, 2017; 8(6): 975-992.Dibner JJ. and Richards JD. Antibiotic growth promoters in agriculture: history and mode of action. Poult Sci, 2005; 84: 634-43. [DOI:10.1080/21505594.2016.1270493] [PMID] []
15. El-Saadony MT., Salem HM., El-Tahan AM., Abd El-Mageed TA., Soliman SM., Khafaga AF., et al. The control of poultry salmonellosis using organic agents: an updated overview. Poult Sci, 2022; 101(4): 101716. [DOI:10.1016/j.psj.2022.101716] [PMID] []
16. Evseev P., Lukianova A., Tarakanov R., Tokmakova A., Popova A, Kulikov E., Shneider M, Ignatov A., et al. Prophage-derived regions in curtobacterium genomes: good things, small packages. Int J Mol Sci, 2023; 24(2): 1586. [DOI:10.3390/ijms24021586] [PMID] []
17. FAO. Food and Agriculture Organization of the United Nations-FAOStat, Land Use Data, 2020.
18. Gervasi T., Horn N., Wegmann U., Dugo G., Narbad A. and Mayer MJ. Expression and delivery of an endolysin to combat Clostridium perfringens. Appl Microbiol Biotechnol, 2014; 98(6): 2495-505. [DOI:10.1007/s00253-013-5128-y] [PMID] []
19. Ghose C., and Euler CW. Gram-negative bacterial lysins. Antibiotics (Basel), 2020; 9: 74. [DOI:10.3390/antibiotics9020074] [PMID] []
20. Gutiérrez D. and Briers Y. Lysins breaking down the walls of Gram-negative bacteria, no longer a no-go. Curr Opin Biotechnol, 2021; 68: 15-22. [DOI:10.1016/j.copbio.2020.08.014] [PMID]
21. Ha E., Son B. and Ryu S. Clostridium perfringens virulent bacteriophage CPS2 and its thermostable endolysin lysCPS2. Viruses, 2018; 10: 251. [DOI:10.3390/v10050251] [PMID] []
22. Habibi GH. Evaluation of antibiotic residues in the liver of broiler by four-plate method in Kazerun city. J Altern Vet Med, 2018; 2: 273-82.
23. Hammond RW., Swift SM., Foster-Frey JA., Kovalskaya NY. and Donovan DM. Optimized production of a biologically active Clostridium perfringens glycosyl hydrolase phage endolysin PlyCP41 in plants using virus-based systemic expression. BMC Biotechnol, 2019; 19: 1-10. [DOI:10.1186/s12896-019-0594-7] [PMID] []
24. Hegemann JD., Birkelbach J., Walesch S. and Müller R. Current developments in antibiotic discovery: Global microbial diversity as a source for evolutionary optimized anti‐bacterials. EMBO Rep, 2023; 24: e56184. [DOI:10.15252/embr.202256184] [PMID] []
25. Heselpoth RD., Swift SM., Linden SB., Mitchell MS. and Nelson DC. Enzybiotics: Endolysins and Bacteriocins. In: Harper DR., Abedon ST., Burrowes BH., McConville ML. (eds) Bacteriophages., Springer, 2021; PP: 989-1030. [DOI:10.1007/978-3-319-41986-2_34]
26. Habibi GH. and Ziyaii M. Isolation of Escherichia coli from the yolk sac of one-day old chicks with their antibiogram in Mashhad-Iran. J Altern Vet Med, 2021; 4(10): 579-585.
27. Hu YJ. and Cowling BJ. Reducing antibiotic use in livestock, China. Bull World Health Organ, 2020; 98(5): 360-361. [DOI:10.2471/BLT.19.243501] [PMID] []
28. Jeong TH., Hong HW., Kim MS., Song M. and Myung H. Characterization of three different endolysins effective against gram-negative bacteria. Viruses, 2023;15(3):679. [DOI:10.3390/v15030679] [PMID] []
29. Kazanavičiūtė V., Misiūnas A., Gleba Y., Giritch A. and Ražanskienė A. Plant-expressed bacteriophage lysins control pathogenic strains of Clostridium perfringens. Sci Rep, 2018; 8(1): 10589. [DOI:10.1038/s41598-018-28838-4] [PMID] []
30. Kemmett K., Williams NJ., Chaloner G., Humphrey S., Wigley P. and Humphrey T. The contribution of systemic Escherichia coli infection to the early mortalities of commercial broiler chickens. Avian Pathol, 2014; 43(1): 37-42. [DOI:10.1080/03079457.2013.866213] [PMID]
31. Leonard AC., Goncheva MI., Gilbert SE., Shareefdeen H., Petrie LE., Thompson LK., et al. Autolysin-mediated peptidoglycan hydrolysis is required for the surface display of Staphylococcus aureus cell wall-anchored proteins. Proc Natl Acad Sci U S A, 2023; 120(12): e2301414120. [DOI:10.1073/pnas.2301414120] [PMID] []
32. Li P., He F., Wu C., Zhao G., Hardwidge PR., Li N., et al. Transcriptomic analysis of chicken lungs infected with avian and bovine pasteurella multocida serotype A. Front Vet Sci, 2020; 7: 452. [DOI:10.3389/fvets.2020.00452] [PMID] []
33. Liu, H., Z. Hu, M. Li, Y. Yang, S. Lu, and X. Rao. 2023a. 'Therapeutic potential of bacteriophage endolysins for infections caused by Gram-positive bacteria', J Biomed Sci, 30: 29. [DOI:10.1186/s12929-023-00919-1] [PMID] []
34. Liu H., Hu Z., Li M., Yang Y., Lu S. and Rao X. Therapeutic potential of bacteriophage endolysins
35. for infections caused by Gram-positive bacteria. J Biomed Sci. 2023b; 30(1): 29.
36. Łojewska E. and Sakowicz T. An alternative to antibiotics: selected methods to combat zoonotic foodborne bacterial infections. Curr Microbiol, 2021; 78(12): 4037-4049. [DOI:10.1007/s00284-021-02665-9] [PMID] []
37. Lu R., Liu B., Wu L., Bao H., García P., Wang Y., et al. 2023. A broad-spectrum phage endolysin (LysCP28) able to remove biofilms and inactivate clostridium perfringens strains. Foods, 2023; 12: 411. [DOI:10.3390/foods12020411] [PMID] []
38. Meng F., and Lowell CA. Lipopolysaccharide (LPS)-induced macrophage activation and signal transduction in the absence of Src-family kinases Hck, Fgr, and Lyn. J Exp Med, 1997; 185: 1661-70. [DOI:10.1084/jem.185.9.1661] [PMID] []
39. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022; 399(10325): 629-655. [DOI:10.1016/S0140-6736(21)02724-0] [PMID]
40. Murray E., Draper LA., Ross RP. and Hill C. The advantages and challenges of using endolysins in a clinical setting. Viruses, 2021; 13(4): 680. [DOI:10.3390/v13040680] [PMID] []
41. Nariya H., Miyata S., Tamai E., Sekiya H., Maki J. nad Okabe A. Identification and characterization of a putative endolysin encoded by episomal phage phiSM101 of Clostridium perfringens. Appl Microbiol Biotechnol, 2011; 90(6): 1973-9. [DOI:10.1007/s00253-011-3253-z] [PMID]
42. Nhung NT., Chansiripornchai N. and Carrique-Mas JJ. Antimicrobial resistance in bacterial poultry pathogens: a review. Front Vet Sci, 2017; 4: 126. [DOI:10.3389/fvets.2017.00126] [PMID] []
43. Ogwuche A., Ekiri AB., Endacott I., Maikai BV., Idoga ES., Alafiatayo R., et al. Antibiotic use practices of veterinarians and para-veterinarians and the implications for antibiotic stewardship in Nigeria. J S Afr Vet Assoc, 2021; 92(0): e1-e14. [DOI:10.4102/jsava.v92i0.2120] [PMID] []
44. Oliveira H., Thiagarajan V., Walmagh M., Sillankorva S., Lavigne R., Neves-Petersen MT., et al. A thermostable Salmonella phage endolysin, Lys68, with broad bactericidal properties against gram-negative pathogens in presence of weak acids. PLoS One, 2014; 9(10): e108376. [DOI:10.1371/journal.pone.0108376] [PMID] []
45. Organization World Health. Stop overuse and misuse of antibiotics: combat resistance. 2017.
46. Osman KM. and Elhariri M. Antibiotic resistance of Clostridium perfringens isolates from broiler chickens in Egypt. Rev Sci Tech, 2013; 32(3): 841-50. [DOI:10.20506/rst.32.2.2212] [PMID]
47. Rahman MU., Wang W., Sun Q., Shah JA., Li C., Sun Y., et al. Endolysin, a promising solution against antimicrobial resistance. Antibiotics (Basel), 2021; 10(11): 1277. [DOI:10.3390/antibiotics10111277] [PMID] []
48. Ranaei V, Pilevar Z, Esfandiari C, Khaneghah AM, Dhakal R, Vargas-Bello-Pérez E, Hosseini H. Meat value chain losses in Iran. Food Sci Anim Resour, 2021; 41(1): 16-33. [DOI:10.5851/kosfa.2020.e52] [PMID] []
49. Sato Y., Wigle WL., Gallagher S., Johnson AL., Sweeney RW. and Wakenell PS. Outbreak of type C botulism in commercial layer chickens. Avian Dis, 2016; 60(1): 90-94. [DOI:10.1637/11293-100415-Case.1] [PMID]
50. Scharff RL. Food attribution and economic cost estimates for meat-and poultry-related illnesses. J Food Prot, 2020; 83: 959-67. [DOI:10.4315/JFP-19-548] [PMID]
51. Schmelcher M., Donovan DM. and Loessner MJ. Bacteriophage endolysins as novel antimicrobials. Future Microbiol, 2012; 7: 1147-71. [DOI:10.2217/fmb.12.97] [PMID] []
52. Schmelcher M. and Loessner MJ. Bacteriophage endolysins-extending their application to tissues and the bloodstream. Curr Opin Biotechnol, 2021; 68: 51-59. [DOI:10.1016/j.copbio.2020.09.012] [PMID]
53. Schmitz JE., Ossiprandi MC., Rumah KR. and Fischetti VA. Lytic enzyme discovery through multigenomic sequence analysis in Clostridium perfringens. Appl Microbiol Biotechnol, 2011; 89(6): 1783-1795. [DOI:10.1007/s00253-010-2982-8] [PMID] []
54. Sekiya H., Kamitori S., Nariya H., Matsunami R. and Tamai E. Structural and biochemical characterization of the Clostridium perfringens-specific Zn2+-dependent amidase endolysin, Psa, catalytic domain. Biochem Biophys Res Commun, 2021a; 576: 66-72. [DOI:10.1016/j.bbrc.2021.08.085] [PMID]
55. Sekiya H., Okada M., Tamai E., Shimamoto T., Shimamoto T. and Nariya H. A putative amidase endolysin encoded by clostridium perfringens st13 exhibits specific lytic activity and synergizes with
56. the muramidase endolysin psm. Antibiotics (Basel), 2021b; 10(3): 245. [DOI:10.3390/antibiotics10030245] [PMID] []
57. Simmons M., Donovan DM., Siragusa GR. and Seal BS. Recombinant expression of two bacteriophage proteins that lyse clostridium perfringens and share identical sequences in the C-terminal cell wall binding domain of the molecules but are dissimilar in their N-terminal active domains. J Agric Food Chem, 2010; 58(19): 10330-10337. [DOI:10.1021/jf101387v] [PMID] []
58. Swift SM., Reid KP., Donovan DM. and Ramsay TG. Thermophile lytic enzyme fusion proteins that target clostridium perfringens. Antibiotics (Basel), 2019; 8(4): 214. [DOI:10.3390/antibiotics8040214] [PMID] []
59. Swift SM., Seal BS., Garrish JK., Oakley BB., Hiett K., Yeh HY., et al. A Thermophilic phage endolysin fusion to a clostridium perfringens-specific cell wall binding domain creates an anti-clostridium antimicrobial with improved thermostability. Viruses, 2015; 7(6): 3019-34. [DOI:10.3390/v7062758] [PMID] []
60. Swift SM., Waters JJ., Rowley DT., Oakley BB. and Donovan DM. Characterization of two glycosyl hydrolases, putative prophage endolysins, that target Clostridium perfringens. FEMS Microbiol Lett, 2018; 365(16): fny179. [DOI:10.1093/femsle/fny179]
61. Thøfner IDA. and Christensen JP. Bacterial diseases in poultry. In: Advancements and technologies in pig and poultry bacterial disease control (Elsevier), 2021. [DOI:10.1016/B978-0-12-818030-3.00005-2]
62. Tillman GE., Simmons M., Garrish JK. and Seal BS. Expression of a Clostridium perfringens genome-encoded putative N-acetylmuramoyl-L-alanine amidase as a potential antimicrobial to control the bacterium. Arch Microbiol, 2013; 195(10-11): 675-81. [DOI:10.1007/s00203-013-0916-4] [PMID] []
63. Wahyono ND. and Utami MMD. A review of the poultry meat production industry for food safety in Indonesia. J Phys Conf Ser, 2018; 012125. [DOI:10.1088/1742-6596/953/1/012125]
64. Wang X., Han L., Rong J., Ren H., Liu W. and Zhang C. Endolysins of bacteriophage vB_Sal-S-S10 can naturally lyse Salmonella enteritidis. BMC Vet Res, 2022; 18(1): 410. [DOI:10.1186/s12917-022-03514-y] [PMID] []
65. Wieczorek K., Wołkowicz T. and Osek J. Antimicrobial resistance and virulence-associated traits of campylobacter jejuni isolated from poultry food chain and humans with diarrhea. Front Microbiol, 2018; 9: 1508. [DOI:10.3389/fmicb.2018.01508] [PMID] []
66. Yuan B., Sun Z., Lu M., Lillehoj H., Lee Y., Liu L., et al. Immunization with pooled antigens for clostridium perfringens conferred partial protection against experimental necrotic enteritis in broiler chickens. Vaccines (Basel), 2022; 10(6): 979. [DOI:10.3390/vaccines10060979] [PMID] []
67. Zampara A., Sørensen MCH., Gencay YE., Grimon D., Kristiansen SH., Jørgensen LS., et al. Developing Innolysins against campylobacter jejuni using a novel prophage receptor-binding protein. Front Microbiol, 2021; 12: 619028. [DOI:10.3389/fmicb.2021.619028] [PMID] []
68. Zimmer M., Vukov N., Scherer S. and Loessner MJ. The murein hydrolase of the bacteriophage phi3626 dual lysis system is active against all tested Clostridium perfringens strains. Appl Environ Microbiol, 2002; 68(11): 5311-7. [DOI:10.1128/AEM.68.11.5311-5317.2002] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.