logo
دوره 7، شماره 21 - ( تابستان 1403 )                   جلد 7 شماره 21 صفحات 1225-1212 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sanjabi L, Mokhtari M. Investigating the Effect of Gallic Acid on the Level of Liver Enzymes and Some Blood Biochemical Parameters in Male Rats Treated with Escitalopram. J Altern Vet Med 2024; 7 (21) :1212-1225
URL: http://joavm.kazerun.iau.ir/article-1-161-fa.html
سنجابی لیلا، مختاری مختار. بررسی تاثیر گالیک اسید بر سطح آنزیم های کبدی و برخی پارامترهای بیوشیمیایی خون در موش صحرایی نر تیمار شده با اس ‌سیتالوپرام. مجله طب دامپزشکی جایگزین. 1403; 7 (21) :1212-1225

URL: http://joavm.kazerun.iau.ir/article-1-161-fa.html


1- گروه زیست شناسی، واحد کازرون، دانشگاه آزاد اسلامی، کازرون، ایران
2- گروه زیست شناسی، واحد کازرون، دانشگاه آزاد اسلامی، کازرون، ایران ، m.mokhtari246@yahoo.com
چکیده:   (142 مشاهده)
زمینه و هدف: اس سیتالوپرام دارویی است که برای مدیریت و درمان اختلالات افسردگی اساسی و اضطراب فراگیر استفاده می شود. این مطالعه با هدف بررسی اثرات محافظتی گالیک اسید بعنوان یک آنتی اکسیدان با دوزهای مختلف در موشهای صحرایی تیمار شده با اس سیتالوپرام انجام شد.
مواد و روش ‏ها: در این مطالعه تجربی، موشهای صحرایی به 7 گروه 7تایی شامل: گروه کنترل، گروه شاهد (ml 1 آب مقطر بعنوان حلال دارو)، گروه های تجربی 1 (mg/kg 10 اس سیتالوپرام) و 2 (mg/kg 20 گالیک اسید)، گروه های تجربی 3، 4 و 5 (ابتدا mg/kg 10 اس سیتالوپرام و سپس به ترتیب 5، 10 و 20 mg/kg گالیک اسید) بصورت گاواژ به مدت 28 روز دریافت نمودند. در انتهای مطالعه، سنجش آنزیمهای کبدی (ALT، AST، GGT) و پارامترهای بیوشیمیایی خون (ALP، آلبومین، پروتئین تام و بیلی روبین تام) انجام شد.
یافته ‏ها: تجویز اس سیتالوپرام در گروه تجربی 1 موجب افزایش سطح سرمی ALT، AST، GGT، ALP، آلبومین و بیلی روبین تام در مقایسه با گروه های کنترل و شاهد گردید (p<0.05) اما سطح سرمی پروتیین تام کاهش معنی دار (p<0.05 نشان داد. تجویز گالیک اسید در دوزهای مختلف (5، 10 و 20 میلی گرم بر کیلوگرم) در موشهای صحرایی تیمار شده با اس سیتالوپرام در مقایسه با گروه تجربی 1 موجب کاهش سطح سرمی ALT، AST، GGT، ALP، آلبومین و بیلی روبین تام گردید (p<0.05) اما سطح سرمی پروتیین تام افزایش معنی دار نشان داد (p<0.05).
نتیجه ‏گیری: اس سیتالوپرام می تواند در دوز mg/kg 10 باعث اختلال در آنزیمهای کبدی و پارامترهای بیوشیمیایی خون شود. با این حال گالیک اسید بعنوان یک آنتی اکسیدان بویژه در دوز حداکثر (mg/kg 20) می تواند موجب بهبود سطوح سرمی پروفایل کبدی و پارامترهای بیوشیمیایی خون  در موشهای صحرایی نر تیمار شده با اس‏ سیتالوپرام شود.
متن کامل [PDF 1450 kb]   (77 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: فارماکولوژی و فیزیولوژی
دریافت: 1402/4/25 | پذیرش: 1402/7/24 | انتشار: 1403/6/10

فهرست منابع
1. Ahmed LA., Shiha NA. and Attia AS. Escitalopram ameliorates cardiomyopathy in type 2 diabetic rats via modulation of receptor for advanced glycation end products and its downstream signaling cascades. Front Pharmacol, 2020; 11: 579206. doi: 10.3389/fphar.2020.579206. [DOI:10.3389/fphar.2020.579206] [PMID] []
2. Ahn TH., Yang YS., Lee JC., Moon CJ., Kim SH., Jun W., et al. Ameliorative effects of pycnogenol on carbon tetrachloride-induced hepatic oxidative damage in rats. Phytother Res, 2007; 21: 1015-1019. [DOI:10.1002/ptr.2146] [PMID]
3. Aithal GP., Watkins PB., Andrade RJ., Larrey D., Molokhia M., Takikawa H., et al. Case definition and phenotype standardization in drug-induced liver injury. Clin Pharmacol Ther, 2011; 89: 806-815. [DOI:10.1038/clpt.2011.58] [PMID]
4. Bai C., Zhang M., Zhang Y., He Y., Dou H., Wang Z., et al. Gamma-glutamyltransferase activity (GGT) is a long-sought biomarker of redox status in blood circulation: a retrospective clinical study of 44 types of human diseases. Oxid Med Cell Longev, 2022 6; 2022: 8494076. [DOI:10.1155/2022/8494076] [PMID] []
5. Blas-Valdivia V., Franco-Colín M., Rojas-Franco P., Chao-Vazquez A. and Cano-Europa E. Gallic acid prevents the oxidative and endoplasmic reticulum stresses in the hippocampus of adult-onset hypothyroid rats. Front Pharmacol, 2021; 12: 671614. [DOI:10.3389/fphar.2021.671614] [PMID] []
6. Capella D., Bruguera M., Figueras A. and Laporte, J. Fluoxetine‐ induced hepatitis: Why is postmarketing surveillance needed?. Eur J Clin Pharmacol, 1999; 55: 545-546. [DOI:10.1007/s002280050671] [PMID]
7. Chu A. and Wadhwa R. Selective Serotonin Reuptake Inhibitors. StatPearls Publishing; Treasure Island, FL, USA: 2020.
8. Clevenger SS., Malhotra D., Dang J., Vanle B. and IsHak WW. The role of selective serotonin reuptake inhibitors in preventing relapse of major depressive disorder. Ther Adv Psychopharmacol, 2018; 8: 49-58. doi: 10.1177/2045125317737264. [DOI:10.1177/2045125317737264] [PMID] []
9. Esmaeilzadeh M., Heidarian E., Shaghaghi M., Roshanmehr H., Najafi M., Moradi A., et al. Gallic acid mitigates diclofenac-induced liver toxicity by modulating oxidative stress and suppressing IL-1β gene expression in male rats. Pharm Biol, 2020; 58(1): 590-596. doi: 10.1080/13880209.2020.1777169. [DOI:10.1080/13880209.2020.1777169] [PMID] []
10. Farashbandi AL., Shariati M. and Mokhtari M. Comparing the protective effects of curcumin and ursodeoxycholic acid after ethanol-induced hepatotoxicity in rat liver. Ethiop J Health Sci, 2021; 31(3): 673-682. doi: 10.4314/ejhs.v31i3.25. [DOI:10.4314/ejhs.v31i3.25] [PMID] []
11. Feldman M., Friedman LS. And Brandt LJ. Sleisenger & Fordtran's gastrointestinal and liver disease: Pathophysiology, diagnosis, management. 8th ed, Saunders Elsevier, 2006.
12. Franzini M., Corti A., Fornaciari I., Balderi M., Torracca F., Lorenzini E., et al. Cultured human cells release soluble gamma-glutamyltransferase complexes
13. corresponding to the plasma b-GGT. Biomarkers, 2009; 14(7): 486-92. doi: 10.3109/13547500903093757. [DOI:10.3109/13547500903093757] [PMID]
14. Friedenberg FK., Rothstein KD. Hepatitis secondary to fluoxetine treatment. Am J Psychiatry, 1996; 153: 580. [DOI:10.1176/ajp.153.4.580a] [PMID]
15. Grundemar L., Wohlfart B., Lagerstedt C., Bengtsson F. and Eklundh G. Symptoms and signs of severe citalopram overdose. Lancet, 1997; 349: 1602. [DOI:10.1016/S0140-6736(05)61630-3] [PMID]
16. Hannuksela ML., Liisanantti MK., Nissinen AET. and Savolainen MJ. Biochemical markers of alcoholism. CCLM, 2007; 45(8): 953-961. [DOI:10.1515/CCLM.2007.190] [PMID]
17. Huh D., Leslie DC., Matthews BD., Huh D., Leslie DC., Matthews BD., et al. A human disease model of drug toxicity‐induced pulmonary edema in a lung‐on‐a‐chip microdevice. Science Translational Medicine, 2012; 4(159): 159ra147. [DOI:10.1126/scitranslmed.3004249] [PMID] []
18. İlgin S., Dagasan F., Burukoglu Donmez D., Baysal M. and Atli Eklioglu O. Evaluation of the hepatotoxic potential of citalopram in rats. Istanbul J Pharm, 2020: 50(3): 188-194.
19. Irie M., Sohda T., Iwata K., Kunimoto H., Fukunaga A., Kuno S., et al. Levels of the oxidative stress marker γ-glutamyltranspeptidase at different stages of nonalcoholic fatty liver disease. J Int Med Res, 2012; 40(3): 924-33. doi: 10.1177/147323001204000311. [DOI:10.1177/147323001204000311] [PMID]
20. Jadon A., Bhadauria M. and Shukla S. Protective effect of Terminalia belerica Roxb and gallic acid against carbon tetrachloride induced damage in albino rats. J Ethnopharmacol, 2007; 109: 214-218. [DOI:10.1016/j.jep.2006.07.033] [PMID]
21. Locatelli C., Filippi-Monteiro FB. and Creezynski-pasa TB. Alkyl esters of gallic acid as anticancer agents: a review. Eur J Med Chem, 2013; 20: 233-239. [DOI:10.1016/j.ejmech.2012.10.056] [PMID]
22. Muriel P. and Gordillo KR. Role of Oxidative Stress in Liver Health and Disease. Oxid Med Cell Longev, 2016; 2016: 9037051. [DOI:10.1155/2016/9037051] [PMID] []
23. Ng QX., Yong CSK., Loke W., Yeo WS. and Soh AYS. Escitalopram-induced liver injury: A case report and review of literature. World J Hepatol, 2019; 11(10): 719-724. doi: 10.4254/wjh.v11.i10.719. [DOI:10.4254/wjh.v11.i10.719] [PMID] []
24. Ojeaburu SI. and Oriakhi K. Hepatoprotective, antioxidant and, anti-inflammatory potentials of gallic acid in carbon tetrachloride-induced hepatic damage in Wistar rats. Toxicol Rep, 2021; 8: 177-185. [DOI:10.1016/j.toxrep.2021.01.001] [PMID] []
25. Oriakhi K., Uadia PO. and Eze G. Hepatoprotective potential of methanol extract of Tetracarpidum conophorum seeds in carbon tetrachloride induced liver damage. Clin Phytoscience, 2017; 4: 25. [DOI:10.1186/s40816-018-0085-8]
26. Owens MJ and Rosenbaum JF. Escitalopram: a second-generation SSRI. CNS Spectrums. 2002; 7(suppl 1): 34-39. [DOI:10.1017/S1092852900028583] [PMID]
27. Perazzoli MRA., Perondi CK., Baratto CM., Winter E., Creczynski-Pasa TB. and Locatelli C. Gallic acid and dodecyl gallate prevents carbon tetrachloride-induced acute and chronic hepatotoxicity by enhancing hepatic antioxidant status and increasing p53 expression. Biol Pharm Bull, 2017; 40: 425-434. [DOI:10.1248/bpb.b16-00782] [PMID]
28. Pereira GC., Silva AM., Diogo CV., Carvalho FS., Monteiro P. and Oliveira PJ. Drug‐induced cardiac mitochondrial toxicity and protection: From doxorubicin to carvedilol. Current Pharmaceutical Design, 2011; 17(20): 2113-2129. [DOI:10.2174/138161211796904812] [PMID]
29. PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004. PubChem Compound Summary for CID 146570, Escitalopram; [cited 2023 June 9].
30. Rakshit S., Nirala SK. and Bhadauria M. Gallic acid protects from acute multiorgan injury induced by lipopolysaccharide and d-galactosamine. Curr Pharm Biotechnol, 2020; 21(14): 1489-1504. doi: 10.2174/1389201021666200615165732. [DOI:10.2174/1389201021666200615165732] [PMID]
31. Santarsieri D. and Schwartz TL. Antidepressant efficacy and side-effect burden: A quick guide for clinicians. Drugs Context, 2015; 4: 212290. doi: 10.7573/dic.212290. [DOI:10.7573/dic.212290] [PMID] []
32. Schuster D., Laggner C. and Langer T. Why drugs fail--a study on side effects in new chemical entities. Curr Pharm Des, 2005; 11: 3545-3559. [DOI:10.2174/138161205774414510] [PMID]
33. Sourani Z., Pourgheysari B., Beshkar P., Shirzad H. and Shirzad M. Gallic acid inhibits proliferation and induces apoptosis in lymphoblastic leukemia cell line (C121). Iran J Med Sci, 2016; 41(6): 525-530.
34. Tung Y., Wub J., Huang C., Peng H., Chen Y. and Yang S. Protective effects of Acacia confusa bark extract and its active compound gallic acid against carbon tetrachloride-induced chronic liver injury in rats. Food Chem Toxicol, 2009; 3: 21-27. [DOI:10.1016/j.fct.2009.03.021] [PMID]
35. von Moltke LL., Greenblatt DJ., Giancarlo GM., Granda BW., Harmatz JS. and Shader RI. Escitalopram (S-citalopram) and its metabolites in vitro: cytochromes mediating biotransformation, inhibitory effects, and comparison to R-citalopram. Drug Metab Dispos, 2001; 29(8): 1102-9.
36. Wang D., Zhao Y., Sun Y. and Yang X. Protective effect of Ziyang tea polysaccharides on CCl4 -induced oxidative liver damage in mice. Food Chem, 2014; 143: 371-378. [DOI:10.1016/j.foodchem.2013.08.005] [PMID]
37. World Health Organization. Depression and Other Common Mental Disorders: Global Health Estimates. World Health Organization; Geneva, Switzerland: 2017.
38. Xu H., Zhang Y., Zhang F., Yuan SN., Shao F. and Wang W. Effects of duloxetine treatment on cognitive flexibility and BDNF expression in the mPFC of adult male mice exposed to social stress during adolescence. Front Mol Neurosci, 2016; 9: 95. [DOI:10.3389/fnmol.2016.00095]
39. Yang H., Chuzi S., Sinicropi-Yao L., Johnson D., Chen Y., Clain A., et al. Type of residual symptom and risk of relapse during the continuation/maintenance phase treatment of major depressive disorder with the selective serotonin reuptake inhibitor fluoxetine. Eur Arch Psychiatry Clin Neurosci, 2010; 260: 145-150. doi: 10.1007/s00406-009-0031-3. [DOI:10.1007/s00406-009-0031-3] [PMID]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.