logo
Volume 7, Issue 22 (Autumn 2024)                   J Altern Vet Med 2024, 7(22): 1293-1300 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nassiri D. Investigating the Microbial Contamination of Chicken Meat Paste in Naghadeh City. J Altern Vet Med 2024; 7 (22) :1293-1300
URL: http://joavm.kazerun.iau.ir/article-1-162-en.html
Department of Veterinary Sciences, Naghadeh Branch, Islamic Azad University, Naghadeh, Iran , davoudnassiri6@gmail.com
Abstract:   (191 Views)
Background and aim: The burgers, sausages, and bacon are all prepared using various techniques. MDM (Mechanically Deboned Poultry Meat) is a particular product that is frequently used to make such products. The MDM is really made up of all the chicken leftovers and wastes, including skin, bones, and useless pieces, that are transported to factories in a dirty and unhygienic state and combined together to create MDM (Mechanically Deboned Poultry Meat). The goal of the study is to ascertain the microbiological rate of a substance that will be utilized in food items that people, especially children, consume in large quantities.
Materials and Methods:  100 samples of MDM from sausage manufacturing businesses' bone removal machines were obtained. The microbiological characteristics of the MDM samples were evaluated and analyzed in accordance with Iran standard institutions as soon as they were delivered to the laboratory in cold temperature settings.
Results: The samples' contamination rates were as follows: Infected samples had the following serotypes of Salmonella: 25% S. gallinarum, 19% S. Typhimorium, 17% S. enteritidis, 15% S. paratyphi A, 15% S. paratyphi C, and 9% S. paratyphi B. There were also 68% Staphylococcus aurous, 62% fermentative, 59% E. coli, 53% various forms of Salmonella, and 21% mustiness.
Conclusion: It was evident from counting the colonies that 10% of the samples had contamination rates that were greater than allowed for and beyond the limits. 
Full-Text [PDF 1242 kb]   (94 Downloads)    
Type of Study: Research | Subject: Food Science and Technology
Received: 2023/10/28 | Accepted: 2024/01/25 | Published: 2024/11/30

References
1. Abulreesh HH. Salmonellae in the environment: InTech, 2012.
2. Ahmed AM. Frequency of Shigella, Salmonella species and Intestinal Parasites in a diarrheal diseases in Sinnar State: Sudan University of Science and Technology, 2016.
3. Akramzadeh N., Ramezani Z., Ferdousi R., Akbari-Adergani B., Mohammadi A. and Karimian-Khosroshahi N. editors. Effect of chicken raw materials on physicochemical and microbiological properties of‎ mechanically deboned chicken meat. Vet Res Forum, 2020; 11(2): 153-158.
4. Argaw S. and Addis M. A review on staphylococcal food poisoning. Food Science and Quality Management, 2015; 40: 59-72.
5. Baéza E., Guillier L. nad Petracci M. Production factors affecting poultry carcass and meat quality attributes. Animal, 2022; 16: 100331. [DOI:10.1016/j.animal.2021.100331] [PMID]
6. Baker CG., Ranken M. and Kill R. Food industries manual: Springer Science & Business Media, 2012.
7. Ahmad Bhat K., Manzoor T., Ahmad Dar M., Farooq A., Ahmad Allie K., Majeed Wani S., et al. Salmonella infection and pathogenesis. Enterobacteria. IntechOpen, 2022. [DOI:10.5772/intechopen.102061]
8. Bhatnagar N., Ryan D., Murphy R. and Enright A. A comprehensive review of green policy, anaerobic digestion of animal manure and chicken litter feedstock potential-Global and Irish perspective. Renew Sust Energ Rev, 2022; 154: 111884. [DOI:10.1016/j.rser.2021.111884]
9. Cenci DF., Kilian J., Janeczko MU., Manzoli A., Rigo E. and Soares MBA. Effect of meat and water temperature and emulsion speed on the industrial process for chicken mortadella. J Food Process Eng, 2018; 41(8): e12918. [DOI:10.1111/jfpe.12918]
10. China L. The role of human albumin solution in preventing infection in patients with acute decompensation of liver cirrhosis. Doctoral thesis (Ph.D), UCL (University College London), 2020.
11. Conley L. Talking food: motivations of home food preservation practitioners in Kentucky. Doctoral Dissertation, University of Kentucky, 2014.
12. D'amico DJ. Microbiological quality and safety issues in cheesemaking. Microbiol Spectr, 2014: 251-309. [DOI:10.1128/9781555818593.ch11] []
13. Fimbres-García JO., Flores-Sauceda M., Othon-Díaz ED., García-Galaz A., Tapia-Rodríguez MR. and Silva-Espinoza BA. Facing resistant bacteria with plant essential oils: Reviewing the oregano case. Antibiotics, 2022; 11(12): 1777. [DOI:10.3390/antibiotics11121777] [PMID] []
14. Gharibzahedi SMT. and Jafari SM. The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends Food Sci Technol, 2017; 62: 119-32. [DOI:10.1016/j.tifs.2017.02.017]
15. Iñiguez-Moreno M., González-González RB., Flores-Contreras EA., Araújo RG., Chen WN. and Alfaro-Ponce M. Nano and technological frontiers as a sustainable platform for postharvest preservation of berry fruits. Foods, 2023; 12(17): 3159. [DOI:10.3390/foods12173159] [PMID] []
16. Kralik G., Kralik Z., Grčević M. and Hanžek D. Quality of chicken meat. Animal Husbandry and Nutrition. 2018; 63. [DOI:10.5772/intechopen.72865]
17. Miahi M., Ghorbanpour M. and Kavousifard R. Evaluating the contamination of broiler chickens at Ahvaz slaughterhouses to Salmonella, the 14th Veterinary Conferrence, Iran, 2005; PP: 142.
18. Tarté R., Sebranek JG., Miller DK., Yoder LE., Lonergan SM. and Acevedo NC. Processing Characteristics and Rheological Properties of Mechanically Separated Chicken and Chicken Breast Meat. Meat Muscle Biol, 2018; 2(2): 59. [DOI:10.22175/rmc2018.051]
19. Niazi Shahraki S., Rokni N., Razvilor V., Bahonar A. and Akhondzadeh Basti A. Qualitative and quantitative assessment of killed chicken infection in industrial slaughterhouses of Tehran to Salmonella. J Vet Res, 2007; 6, 385-389.
20. Peng Z., Wang X., Huang J. and Li B. Pathogenic Escherichia coli. Molecular Medical Microbiology: Elsevier, 2024; PP: 1065-96. [DOI:10.1016/B978-0-12-818619-0.00069-1] [PMID] []
21. Querido MM., Aguiar L., Neves P., Pereira CC. and Teixeira JP. Self-disinfecting surfaces and infection control. Colloids Surf B Biointerfaces, 2019; 178: 8-21. [DOI:10.1016/j.colsurfb.2019.02.009] [PMID] []
22. Sarowska J., Futoma-Koloch B., Jama-Kmiecik A., Frej-Madrzak M., Ksiazczyk M. and Bugla-Ploskonska G. Virulence factors, prevalence and potential transmission of extraintestinal
23. pathogenic Escherichia coli isolated from different sources: recent reports. Gut Pathog, 2019; 11: 1-16. [DOI:10.1186/s13099-019-0290-0] [PMID] []
24. Shan LC., Regan Á., Monahan FJ., Li C., Lalor F. and Murrin C. Consumer preferences towards healthier reformulation of a range of processed meat products: A qualitative exploratory study. Br Food J, 2017; 119(9): 2013-26. [DOI:10.1108/BFJ-11-2016-0557]
25. Silva IF., de Rezende-Lago NCM., de Marchi PGF., Messias CT. and Silva LA. Microbiological Quality of Food. Seven Editora, 2023: 1501-18. [DOI:10.56238/colleinternhealthscienv1-120]
26. Tariq S., Samad A., Hamza M., Ahmer A., Muazzam A. and Ahmad S. Salmonella in poultry; an overview. IJMSAT, 2022; 1(1): 80-4. [DOI:10.47709/ijmdsa.v1i1.1706]
27. Vollmers J., Wiegand S., Lenk F. and Kaster A-K. How clear is our current view on microbial dark matter?(Re-) assessing public MAG & SAG datasets with MDMcleaner. Nucleic Acids Res, 2022; 50(13): e76-e. [DOI:10.1093/nar/gkac294] [PMID] []
28. Werthmann J., Jansen A. and Roefs A. Make up your mind about food: A healthy mindset attenuates attention for high-calorie food in restrained eaters. Appetite, 2016; 105:53. [DOI:10.1016/j.appet.2016.05.005] [PMID]
29. Wijesinghe U., Welikala U. and Thiripuranathar G. Mechanism of silver nanoparticle-based postharvest technologies. In Postharvest Nanotechnology for Fresh Horticultural Produce, 1th ed., CRC Press, 2023; PP: 116-141. [DOI:10.1201/9781003142287-6]
30. Yilma Z. Microbial Properties of Ethiopian Marketed Milk and Milk Products and Associated Critical Points of Contamination: An Epidemiological Perspective, Epidemiology Insights, Dr. Maria De Lourdes Ribeiro De Souza Da Cunha (Ed.), InTech, 2012; 20: 297. [DOI:10.5772/31595] []
31. Zhang S., Abbas M., Rehman MU., Huang Y., Zhou R. and Gong. Dissemination of antibiotic resistance genes (ARGs) via integrons in Escherichia coli: a risk to human health. Environ Pollut, 2020; 266: 115260. [DOI:10.1016/j.envpol.2020.115260] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.