logo
Volume 7, Issue 22 (Autumn 2024)                   J Altern Vet Med 2024, 7(22): 1321-1332 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Golbouy Daghdari S, Tehrani A A. Comparative Evaluation of Silver and Zinc Oxide Nanoparticles in Healing of Staphylococcus aureus-Infected Wounds: A Preclinical Study. J Altern Vet Med 2024; 7 (22) :1321-1332
URL: http://joavm.kazerun.iau.ir/article-1-186-en.html
1- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Iran , shabnam.golbouy@gmail.com
2- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Iran
Abstract:   (146 Views)
Background and Aim: Skin and wound infections commonly result from Staphylococcus aureus, necessitating alternative therapeutic approaches due to escalating antibiotic resistance. This study aims to conduct a thorough comparative analysis, evaluating the distinct impacts of Zinc Oxide nanoparticles (ZnONPs) and Silver nanoparticles (AgNPs), both within the 20 to 30 nm range, on the healing process of infected wounds.
Materials and Methods: Forty-eight male mice were randomly divided into four groups. Full-thickness skin wounds were induced on the animals' backs under anesthesia, followed by inoculation with a bacterial suspension (108 CFU/ml) of S. aureus. Topical treatments, including 40 μl of ZnONPs, 40 μl of AgNPs, Tetracycline, and normal saline, were applied to the wound beds. Macroscopic monitoring and histopathological examinations on days 7, 14, and 21 assessed re-epithelialization, inflammation, and angiogenesis. Antibacterial effectiveness was determined by finding the MIC, and SPSS software was used for statistical analysis.
Results: The MIC results reveal a significant contrast in antibacterial effectiveness, with AgNPs at 3.91 μg/ml and ZnONPs at 125 μg/ml, indicating AgNPs' superior potency at lower concentrations. In the macroscopic examination of wounds, both AgNPs and ZnONPs exhibited a substantial acceleration in wound closure, significantly outperforming the negative control group (p<0.05). However, a nuanced distinction emerged in histopathological analysis; while both nanoparticles similarly contributed to reducing inflammation, ZnONPs displayed superior effects on reepithelialization and neovascularization compared to other groups, all without inducing cytotoxicity.
Conclusion: The study concludes that AgNPs are potent antibacterial agents, while ZnONPs contribute significantly to advanced wound healing. The comparative analysis provides valuable insights for tailored wound management approaches, considering the distinctive strengths of each nanoparticle. Future research and clinical applications stand to benefit from optimizing therapeutic outcomes across diverse wound healing scenarios.
Full-Text [PDF 2645 kb]   (60 Downloads)    
Type of Study: Research | Subject: Microbiology
Received: 2024/07/20 | Accepted: 2024/10/20 | Published: 2024/11/30

References
1. Abramov Y., Golden B., Sullivan M., Botros SM., Miller JJR., Alshahrour A., et al. Histologic characterization of vaginal vs. abdominal surgical wound healing in a rabbit model. Wound Repair Regen, 2007; 15(1): 80-6. [DOI:10.1111/j.1524-475X.2006.00188.x] [PMID]
2. Ahmadi M. and Adibhesami M. The effect of silver nanoparticles on wounds contaminated with Pseudomonas aeruginosa in mice: an experimental study. Iran J Pharm Res: IJPR, 2017; 16(2): 661.
3. Aloe C., Feltis B., Wright P. and Macrides T. Potential for enhanced wound healing with ZnO nanoparticles. Front, Bioeng, Biotechnol, Conference Abstract: 10th World Biomaterials Congress, 2016.
4. Augustine R., Dominic EA., Reju I., Kaimal B., Kalarikkal N. and Thomas S. Electrospun polycaprolactone membranes incorporated with ZnO nanoparticles as skin substitutes with enhanced fibroblast proliferation and wound healing. Rsc Advances, 2014; 4(47): 24777-85. [DOI:10.1039/c4ra02450h]
5. Barui AK., Veeriah V., Mukherjee S., Manna J., Patel AK., Patra S., et al. Zinc oxide nanoflowers make
6. new blood vessels. Nanoscale, 2012; 4(24): 7861-9. [DOI:10.1039/c2nr32369a] [PMID]
7. Baumans V. and Van Loo P. How to improve housing conditions of laboratory animals: The possibilities of environmental refinement. Vet J, 2013; 195 (1): 24-32. [DOI:10.1016/j.tvjl.2012.09.023] [PMID]
8. Chhabra H., Deshpande R., Kanitkar M., Jaiswal A., Kale VP. and Bellare JR. A nano zinc oxide doped electrospun scaffold improves wound healing in a rodent model. RSC Advances, 2016; 6(2): 1428-39. [DOI:10.1039/C5RA21821G]
9. Daghdari SG., Ahmadi M., Saei HD. and Tehrani AA. The effect of ZnO nanoparticles on bacterial load of experimental infectious wounds contaminated with Staphylococcus aureus in mice. Nanomed J, 2017; 4(4): 232-236.
10. Elhabal SF., Abdelaal N., Saeed Al-Zuhairy SA., Elrefai MF., Elsaid Hamdan AM., Khalifa MM., Hababeh S., et al. Green synthesis of zinc oxide nanoparticles from althaea officinalis flower extract coated with chitosan for potential healing effects on diabetic wounds by inhibiting TNF-α and IL-6/IL-1β signaling pathways. Int J Nanomedicine, 2024; 19: 3045-70. [DOI:10.2147/IJN.S455270] [PMID] []
11. Etheridge ML., Campbell SA., Erdman AG., Haynes CL., Wolf SM. and McCullough J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomed, 2013; 9(1): 1-14. [DOI:10.1016/j.nano.2012.05.013] [PMID] []
12. Foster TJ. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol Rev, 2017; 41(3): 430-49. [DOI:10.1093/femsre/fux007] [PMID]
13. Hartemann P., Hoet P., Proykova A., Fernandes T., Baun A., De Jong W., et al. Nanosilver: Safety, health and environmental effects and role in antimicrobial resistance. Mater Today, 2015; 18(3): 122-3. [DOI:10.1016/j.mattod.2015.02.014]
14. Jiang B., Larson JC., Drapala PW., Pérez‐Luna VH., Kang‐Mieler JJ. and Brey EM. Investigation of lysine acrylate containing poly (N‐isopropylacrylamide) hydrogels as wound dressings in normal and infected wounds. J Biomed Mater Res B Appl Biomater, 2012; 100(3): 668-76. [DOI:10.1002/jbm.b.31991] [PMID]
15. Kwan KH., Liu X., To MK., Yeung KW., Ho C-m. and Wong KK. Modulation of collagen alignment by silver nanoparticles results in better mechanical properties in wound healing. Nanomed, 2011; 7(4): 497-504. [DOI:10.1016/j.nano.2011.01.003] [PMID]
16. Linz MS., Mattappallil A., Finkel D. and Parker D. Clinical impact of Staphylococcus aureus skin and soft tissue infections. Antibiotics, 2023; 12(3): 557. [DOI:10.3390/antibiotics12030557] [PMID] []
17. Martinez-Gutierrez F., Olive PL., Banuelos A., Orrantia E., Nino N., Sanchez EM., et al. Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomed, 2010; 6(5): 681-8. [DOI:10.1016/j.nano.2010.02.001] [PMID]
18. Mendes CR., Dilarri G., Forsan CF., Sapata VD., Lopes PR., de Moraes PB., et al. Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Scientific Reports, 2022; 12(1): 2658. [DOI:10.1038/s41598-022-06657-y] [PMID] []
19. Bold BE., Urnukhsaikhan E. and Mishig-Ochir T. Biosynthesis of silver nanoparticles with antibacterial, antioxidant, anti-inflammatory properties and their burn wound healing efficacy. Frontiers in Chemistry, 2022; 10: 972534. [DOI:10.3389/fchem.2022.972534] [PMID] []
20. Mihu MR., Sandkovsky U., Han G., Friedman JM., Nosanchuk JD. and Martinez LR. The use of nitric oxide releasing nanoparticles as a treatment against Acinetobacter baumannii in wound infections. Virulence, 2010; 1(2): 62-7. [DOI:10.4161/viru.1.2.10038] [PMID]
21. Mohanty S., Mishra S., Jena P., Jacob B., Sarkar B. and Sonawane A. An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomed, 2012; 8(6): 916-24. [DOI:10.1016/j.nano.2011.11.007] [PMID]
22. Panáček A., Kvítek L., Prucek R., Kolář M., Večeřová R., Pizúrová N., et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J PHYS CHEM B, 2006; 110(33): 16248-53. [DOI:10.1021/jp063826h] [PMID]
23. Pati R., Mehta RK., Mohanty S., Padhi A., Sengupta M. and Vaseeharan B. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomed, 2014; 10(6): 1195-208. [DOI:10.1016/j.nano.2014.02.012] [PMID]
24. Raghupathi KR., Koodali RT. and Manna AC. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 2011; 27(7): 4020-8. [DOI:10.1021/la104825u] [PMID]
25. Serra R., Grande R, Butrico L., Rossi A., Settimio U.F, Caroleo B., et al. Chronic wound infections: the role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert Rev Anti Infect Ther, 2015; 13(5): 605-13. [DOI:10.1586/14787210.2015.1023291] [PMID]
26. Sirelkhatim A., Mahmud S., Seeni A., Kaus NHM., Ann LC., Bakhori SKM., et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro letters, 2015; 7: 219-42. [DOI:10.1007/s40820-015-0040-x] [PMID] []
27. Vendrame S., Alaba T., Marchi N., Tsakiroglou P. and Klimis-Zacas D. In vitro and in vivo evaluation of bioactive compounds from berries for wound healing. Curr Dev Nutr, 2024: 102078. [DOI:10.1016/j.cdnut.2024.102078] [PMID] []
28. Wasef LG., Shaheen HM., El-Sayed YS., Shalaby TI., Samak DH., Abd El-Hack ME., et al. Effects of silver nanoparticles on burn wound healing in a mouse model. Biol Trace Elem Res, 2020; 193: 456-65. [DOI:10.1007/s12011-019-01729-z] [PMID]
29. Ziv-Polat O., Topaz M., Brosh T. and Margel S. Enhancement of incisional wound healing by thrombin conjugated iron oxide nanoparticles. Biomater, 2010; 31(4): 741-7. [DOI:10.1016/j.biomaterials.2009.09.093] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.